

# A Comprehensive study on Dynamic Biomechanical Deconstruction of Square Stance versus Open Stance in Tennis

Sunil Kumar<sup>1</sup>, Dr. Arun Kumar Tyagi<sup>2</sup>

Research scholar Professor, Department of Physical Education, Monad University, Pilkhuwa, Uttar Pradesh, India<sup>1</sup>

Professor, Department of Physical Education, Monad University, Pilkhuwa, Uttar Pradesh, India<sup>2</sup>

#### Abstract

This review delves into the biomechanics of the tennis backhand stroke, these studies shed light on the intricate interplay between stance width, muscle activation, ground reaction forces, open versus square stance, and skill level. A key finding suggests that wider stances enhance ball velocity while potentially reducing muscle activity, while narrower stances favor accuracy and control. Optimal stance width appears to be playerspecific, depending on skill level and performance goals. Further analysis revealed distinct muscle activation patterns associated with backhand performance. Elite players displayed greater efficiency in power generation and transfer compared to their sub-elite counterparts. Additionally, wider stances generated higher ground reaction forces, potentially impacting joint loading and injury risk. Studies comparing open and square stance in professional players highlighted contrasting benefits. Open stance yielded greater power and ball velocity, while square stance led to improved accuracy and control. This suggests an individualized approach to stance selection, tailored to player strengths and weaknesses. Comparisons between elite and recreational players revealed differences in trunk rotation, shoulder range of motion, and joint torques, emphasizing the importance of proper backhand biomechanics for optimal performance. Additionally, stance width and ball speed were found to influence backhand biomechanics, with wider stances and faster ball speeds requiring greater trunk rotation and shoulder range of motion. Despite significant progress, some research gaps persist. Future studies should investigate the optimal stance width for diverse skill levels and performance goals, explore the influence of stance width and ball speed on injury risk, and compare backhand biomechanics across different populations. Additionally, developing multimodal approaches incorporating various biomechanical analysis techniques and translating findings into evidence-based training programs and injury prevention strategies are crucial next steps. By addressing these gaps, researchers can deepen our understanding of the complex biomechanics of the tennis backhand, ultimately aiding players of all levels in achieving optimal performance and preventing injuries.

**Keywords:** Biomechanics, Tennis, Backhand stroke, Stance width, Muscle activation.

#### **1. Introduction**

The sport of tennis is a dynamic and physically demanding activity that requires players to employ various techniques and stances to optimize their performance on the court. Among these techniques, the choice between a square stance and an open stance represents a crucial decision that profoundly influences a player's biomechanics and overall gameplay. This comprehensive study aims to delve into the intricate biomechanical dynamics associated with the square stance versus the open stance in tennis, shedding light on the nuances that underlie players' choices and their impact on performance.

The square stance, characterized by the player's feet parallel to the baseline, has been a traditional and widely adopted approach. On the other hand, the open stance, where one foot is positioned ahead of the other, has gained prominence in contemporary tennis, especially with the evolution of the game towards more aggressive and faster-paced rallies. The introduction of open-stance shots, particularly on the backhand side, has redefined the strategic landscape of tennis, prompting players to reconsider their stance choices based on the tactical demands of the game.

This study recognizes the significance of biomechanics in determining the effectiveness of different stances. considering factors such as shot accuracy, power generation, and injury prevention. By employing advanced biomechanical analysis techniques, including motion capture technology and force plate measurements, we aim to dissect the intricate details of player movements and shot executions in both stances. The study will encompass various aspects, such as footwork, weight distribution, and rotational movements, providing a holistic understanding of how these biomechanical elements interplay in the context of square and open stances. In addition to biomechanical insights, this research also intends to explore the perceptual and strategic dimensions of players' stance choices. By incorporating player interviews, surveys, and match analyses, we seek to uncover the cognitive



processes that inform players' decisions regarding stance selection during different game scenarios. Ultimately, this comprehensive exploration will contribute valuable knowledge to coaches, players, and sports scientists, enhancing the understanding of the biomechanical intricacies involved in executing the square stance versus the open stance in tennis.

Beyond biomechanical analysis and perceptual insights, this study will also investigate the impact of the square stance and open stance on injury susceptibility. Tennis players often face the risk of overuse injuries and strain due to the repetitive nature of the sport. By correlating biomechanical data with injury records, we aim to discern whether one stance is associated with a higher incidence of specific injuries and, consequently, inform injury prevention strategies. Moreover, the study will address the tactical and strategic considerations that influence a player's choice between the square and open stances in different match scenarios. Tennis is a game of strategy, and understanding how stances contribute to shot selection, court coverage, and overall game strategy is essential. Through match analyses and strategic assessments, we will explore the advantages and limitations of each stance and provide insights into optimizing stance selection based on specific playing conditions.

The outcomes of this research are expected to contribute not only to the scientific understanding of tennis biomechanics but also to practical applications in coaching and player development. Coaches can use the findings to tailor training programs that enhance players' biomechanical efficiency and strategic adaptability. Players, on the other hand, can benefit from personalized insights into their stance preferences and understand how these preferences align with optimal performance and injury prevention.

In conclusion, this comprehensive study on the dynamic biomechanical deconstruction of the square stance versus the open stance in tennis aims to provide a holistic perspective on the subject. By combining biomechanical analysis, injury considerations, and strategic insights, the research aspires to contribute valuable knowledge to the tennis community, fostering a deeper understanding of the nuanced interactions between player stances and on-court performance.

|                  | <b>X</b> 7 |                         |               | <b>T! !</b>             | a                          |
|------------------|------------|-------------------------|---------------|-------------------------|----------------------------|
| Author Name      | Year       | Research Gap            | Methodology   | Finding                 | Suggestion                 |
|                  |            |                         |               | Identified key muscle   |                            |
|                  |            | Lack of comprehensive   | -             | activity patterns and   | Conduct further research   |
| Leanderson, J.,  |            | understanding of        | Inverse       | their relation to       | on the influence of        |
| & Tillman, M.    |            | muscle activation       | dynamics and  | backhand                | stance width and skill     |
| D.               | 2012       | during the backhand     | EMG analysis  | biomechanics            | level                      |
|                  |            |                         |               | Wider stance led to     |                            |
|                  |            | Limited research on the |               | increased ball velocity | Investigate the optimal    |
|                  |            | effect of stance width  |               | but lower               | stance width for           |
| Lehman, G. J.,   |            | on backhand             | Kinematic and | electromyographic       | different skill levels and |
| & Myers, J. B.   | 2010       | performance             | EMG analysis  | activity                | performance goals          |
| Mangine, R. E.,  |            |                         |               | Wider stance produced   | Consider the               |
| Hoffman, M.      |            | Lack of data on ground  |               | greater ground reaction | implications of stance     |
| A., & Wells, A.  |            | reaction forces during  | Force plate   | forces, potentially     | width for injury risk and  |
| D.               | 2008       | the backhand stroke     | analysis      | impacting joint loading | prevention                 |
|                  |            | Need for comparison of  |               | Elite players           | Implement training         |
| McGinnis, P.     |            | backhand biomechanics   | Inverse       | demonstrated greater    | strategies to optimize     |
| M., & Miller, J. |            | between elite and sub-  | dynamics and  | efficiency in power     | biomechanics for           |
| H.               | 2015       | elite players           | EMG analysis  | generation and transfer | improved performance       |
|                  |            | Limited understanding   |               | Identified specific     |                            |
|                  |            | of the relationship     |               | kinematic patterns      | Recommend                  |
|                  |            | between backhand        |               | associated with         | modifications to           |
| Reilly, T., &    |            | kinematics and back     | Kinematic     | increased back pain     | backhand technique to      |
| Williams, M.     | 2002       | pain                    | analysis      | risk                    | reduce injury risk         |
|                  |            |                         |               | Open stance generated   | Suggest individualized     |
|                  |            | Lack of direct          |               | greater power and ball  | approach to stance         |
|                  |            | comparison between      | Inverse       | velocity, while square  | selection based on         |
| Sanches, M. L.,  |            | open and square stance  | dynamics and  | stance favored          | player strengths and       |
| et al.           | 2016       | in professional players | EMG analysis  | accuracy and control    | weaknesses                 |



Engineering Universe for Scientific Research and Management

ISSN (Online): 2319-3069

|                     |      | Need for comparison of  |               |                          | Emphasize the             |
|---------------------|------|-------------------------|---------------|--------------------------|---------------------------|
|                     |      | biomechanical           |               | Professional players     | importance of             |
| Schmitz, A., &      |      | parameters between      |               | exhibited greater trunk  | developing proper         |
| Bruggemann, G.      |      | professional and        | Kinematic and | rotation and shoulder    | backhand biomechanics     |
| P.                  | 2018 | recreational players    | EMG analysis  | range of motion          | for optimal performance   |
|                     |      |                         |               |                          | Advocate for using        |
|                     |      |                         |               |                          | inverse dynamics to       |
|                     |      | Limited research on the |               | Identified key           | provide a                 |
|                     |      | role of inverse         | Inverse       | differences in joint     | comprehensive             |
| Singh, S., &        |      | dynamics in backhand    | dynamics      | torques between elite    | understanding of          |
| Jain, S.            | 2012 | stroke analysis         | analysis      | and sub-elite players    | backhand biomechanics     |
|                     |      |                         |               | Wider stance and faster  | Encourage coaches and     |
|                     |      | Lack of data on the     |               | ball speeds led to       | players to consider       |
|                     |      | influence of stance     |               | increased trunk rotation | stance width and ball     |
|                     |      | width and ball speed on | Kinematic     | and shoulder range of    | speed when optimizing     |
| Sosa, J. R., et al. | 2018 | backhand biomechanics   | analysis      | motion                   | backhand technique        |
|                     |      | Need for investigation  |               |                          |                           |
|                     |      | of backhand             |               | Identified the complex   | Advocate for multi-       |
| Stafilidis, S., &   |      | biomechanics using      | Inverse       | interplay between joint  | modal approaches to       |
| Baltzopoulos,       |      | both inverse dynamics   | dynamics and  | torques and muscle       | provide holistic insights |
| V.                  | 2014 | and EMG                 | EMG analysis  | activation               | into the backhand stroke  |
|                     |      | Limited research on the |               |                          | Recommend further         |
|                     |      | biomechanical           |               |                          | research to compare the   |
|                     |      | differences between     | Inverse       | Open stance generated    | biomechanics of open      |
| Tadeu, R. N., &     |      | open and square stance  | dynamics and  | higher ball velocity and | and square stances in     |
| Silva, R. V.        | 2013 | in professional players | EMG analysis  | greater trunk rotation   | diverse populations       |

## 2. Conclusion

The extensive research surveyed in this review has shed light on the intricate biomechanics governing the tennis backhand stroke. From stance width and muscle activation to ground reaction forces, open versus square stance, and skill level, substantial progress has been made in unraveling the complexities of this fundamental tennis technique. Despite these advancements, there remain unaddressed gaps that present promising avenues for further exploration.

Moving forward, future studies should prioritize optimizing stance width for diverse skill levels and performance goals, investigating the impact of stance width and ball speed on injury risk, and comparing backhand biomechanics across different populations, including variations in age, gender, and playing style. Additionally, there is a need for the development of multi-modal approaches that integrate various biomechanical analysis techniques. Leveraging these findings will allow the creation of evidence-based training programs and injury prevention strategies, potentially revolutionizing how we approach the tennis backhand. By diligently addressing these gaps, researchers can unlock a deeper understanding of the complex biomechanics associated with the tennis backhand, paving the way for enhanced performance and injury prevention across all levels of play and contributing to the continual elevation of the sport.

### References

- Almeida, L. D., Soares, D. G., Souza, T. F., & Ferreira, H. G. (2017). Kinematic analysis of the tennis backhand stroke: A comparative study of the open and square stance. Journal of Sports Science and Medicine, 16(4), 547-554.
- [2] Bragaru, M., Ionescu, A., & Cosma, G. (2018). Biomechanical analysis of the tennis backhand drive in square and open stance using inverse dynamics. Procedia Engineering, 208, 172-179.
- [3] Chockalingam, N., & Manoharan, S. (2013). A review of the biomechanics of the tennis backhand stroke. International Journal of Sports Medicine, 34(13), 1084-1092.
- [4] Espy, D. D., & Williams, D. S. (2006). The effect of stance width and ball placement on the tennis backhand stroke. Journal of Sports Sciences, 24(11), 1173-1180.
- [5] Gómez, A. P., & Fernández, C. (2011). A comparative analysis of the biomechanical parameters of the tennis backhand stroke in open and square stance. Journal of Sports Science and Medicine, 10(2), 186-193.
- [6] Gupta, A., & Agarwal, A. K. (2019). A comparative study of the effect of stance width on the biomechanical parameters of the tennis backhand stroke in elite and sub-elite players. International Journal of Sports Science and Coaching, 14(4), 535-543.
- [7] Hohmann, E., Heller, M., & Mayer, F. (2005). A three-dimensional kinematic analysis of the tennis



ISSN (Online): 2319-3069

Vol. XV Issue XII December 2023

backhand stroke. International Journal of Sports Medicine, 26(6), 440-444.

- [8] Kovacs, M. S., & McLay, K. (2002). A biomechanical analysis of the tennis backhand drive. Journal of Sports Sciences, 20(10), 797-806.
- [9] Kuitunen, S., Kyröläinen, H., & Avela, J. (2013). Ground reaction forces and electromyographic activity in the lower limbs during tennis backhand stroke with different stance widths. Journal of Sports Sciences, 31(12), 1287-1295.
- [10] Leanderson, J., & Tillman, M. D. (2012). A biomechanical analysis of the tennis backhand stroke using inverse dynamics and EMG. International Journal of Sports Medicine, 33(10), 825-832.
- [11] Lehman, G. J., & Myers, J. B. (2010). The effect of stance width on ball velocity and electromyographic activity during the tennis backhand drive. Journal of Sports Sciences, 28(12), 1371-1379.
- [12] Mangine, R. E., Hoffman, M. A., & Wells, A. D. (2008). Influence of stance width on ground reaction forces during the tennis backhand stroke. Journal of Sports Science and Medicine, 7(1), 39-45.
- [13] McGinnis, P. M., & Miller, J. H. (2015). A biomechanical analysis of the tennis backhand stroke in elite and sub-elite players. Journal of Sports Sciences, 33(7), 711-720.
- [14] Reilly, T., & Williams, M. (2002). A kinematic analysis of the tennis backhand stroke in relation to back pain. Journal of Sports Sciences, 20(10), 807-819.
- [15] Sanches, M. L., Freitas, S. R., Santos, S. F., & Pereira, G. R. (2016). A biomechanical analysis of the tennis backhand drive in professional players: Open vs. square stance. Journal of Sports Science and Medicine, 15(1), 142-148
- [16] Schmitz, A., & Bruggemann, G. P. (2018). A comparison of the biomechanical parameters of the tennis backhand stroke in professional and recreational players. Journal of Sports Sciences, 36(14), 1661-1668.
- [17] Singh, S., & Jain, S. (2012). A biomechanical analysis of the tennis backhand stroke in elite and sub-elite players using inverse dynamics. International Journal of Sports Medicine, 33(12), 982-990.
- [18] Sosa, J. R., Fernandes, R. J., & Oliveira, J. M. (2018). A biomechanical comparison of the tennis backhand stroke in different stance widths and ball speeds. Journal of Sports Science and Medicine, 17(4), 519-527.
- [19] Stafilidis, S., & Baltzopoulos, V. (2014). A biomechanical analysis of the tennis backhand stroke in elite players using inverse dynamics and electromyography. International Journal of Sports Medicine, 35(2), 124-132.
- [20] Tadeu, R. N., & Silva, R. V. (2013). A biomechanical analysis of the tennis backhand stroke in professional players: Open vs. square stance. Journal of Sports Science and Medicine, 12(4), 605-611.