DESIGN OF HIGH SPEED LOW VOLTAGE COMPARATOR DESIGN ON 180nm CMOS

Gaurav Mishra¹, Praveen Malviya², Hari Shanker Srivastava³ & R.K.Baghel⁴
Department of Electronics & Communication Engg. Acropolis institute of technology & Research Bhopal
gouravmishra11@gmail.com¹ itspraveen2003@yahoo.com² hari_shanker1980@rediffmail.com³ rkb.manit@gmail.com⁴

Abstract

In this paper, A CMOS comparator with high low power application is presented. The comparator has been designed and simulated in 180nm CMOS technology. It is designed to sense low voltage using Double-Tail Dual-Rail Dynamic switching method.

Keywords: ADC,DAC,CMOS,SRAM

Introduction

Comparators are widely used as electronic equipments and as a part of ADC and DAC after operational amplifiers in electronics industries . Comparators are known as single bit analog-to digital converter and for that reason they are mostly used in large abundance in A/D converter. In the ADC(analog to digital converter) In conversion process, first sampling of the the input signal to be done . This sampled signal is then applied to comparators circuit either in sample and hold circuit or in simple comparator circuit to determine the binary equivalent of the analog signal. The speed of comparator is reduced due to by the delay time of the comparator. Apart from that, comparators may also be used in other applications like zero-crossing detectors, Schmitt trigger oscillator circuit peak detectors, logarithm amplifier,antilogarithm amplifier, buffer circuit, voltage to current converter and current to voltage converter circuit and others. The basic function of a CMOS comparator is to find out whether the test signal is smaller or greater than the reference signal and outputs is a constant which can be termed as binary signal based on comparison.
Voltage comparator are shown in fig1, this comparator can be thought of as a decision making circuit. The comparator is a circuit that compares an analog signal (voltage) with another analog voltage or reference voltage and outputs a binary signal based on the comparison. Figure 1(a) shows the symbol of the comparator and 1(b) shows ideal transfer characteristics. \(V^+ \) is the input voltage applied to the non inverting terminal input terminal of comparator and \(V^- \) is the reference voltage (constant DC voltage) applied to the inverting terminal of comparator. Now if \(V^+ \), the input of the comparator is at a greater potential than the \(V^- \), the reference voltage, then the output of the comparator is a high or logic 1, whereas if the \(V^+ \) is at a potential less than the \(V^- \), the output of the comparator is a low or logic level 0.

If \(V_{\text{INV}} > V_{\text{NI}} \), then \(V_o= \) logic 1 or high.
If \(V_{\text{INV}} < V_{\text{NI}} \), then \(V_o= \) logic 0 or low.

Analog signal is a continuous signal of a amplitude values at a given point in time. In a binary signal only one of two given values at any given time, but this concept of a binary signal is too ideal for real-time analysis, there is a transition region between the two binary states. It is important for the comparator to pass the signal without any delay through the transition region of the analog or digital signal. The analysis of comparators will first required characterization of comparators. The comparators is divided into two parts open-loop and closed loop with positive feedback are also called regenerative comparators. The open-loop comparators are basically the comparator in which no compensation is applied. Regenerative comparators are basically non-sinusoidal oscillator uses positive feedback, similar to sense amplifiers used in memory design or simply describe as flip-flops, to accomplish the comparison of two signals. Now a days a third type of comparator which is very popular that is a combination of the open-loop and closed comparators. This combination of comparator results very fast comparator with minimum delays.

COMPARATOR ANALYSIS

1. **Comparator based on pre amplification**:
 Figure 1 shows the comparator based on preamplifier process. The comparator consists of three stages: the input preamplifier stage, a latch stage, and an output buffer stage. The preamplifier stage is basically a CMOS differential amplifier stages. The preamplifier stage amplifies the input signal to improve the sensitivity of comparator sensitivity simultaneously it also cancelled the noise due the regenerative stage. It also reduce input offset voltage. The sizes of \(M_1 \) and \(M_2 \) are set in such a way that optimum transconductance and minimum input capacitance to be achieved.

 ![Figure 2: Preamplifier based comparator.](image)

 CMOS voltage Sense Amplifier:

 ![Figure 3: Dynamic Voltage Sense Amplifier](image)
Latch type sense amplifiers are single-bit memory used in A/D converters, data receivers and on-chip transistors since they yield their decision making fast due to regenerative feedback. Due to small offset and high speed these are very efficient comparators. Figure 2 shows the circuit diagram of voltage sense amplifier that uses back to back latch stage to produce positive feedback. This circuit was first introduced by Kobayashi in 1993. The current of the differential input transistors M_8 and M_9 controls the latch circuit. A small difference of currents between M_8 and M_9 converts to a large output voltage. Transistors M_{10} and M_{11} are added to increase its speed. These circuits formed single bit flip-flop, used in SRAM.

Voltage SA Double-Tail Latch Type:

Figure 3 shows the circuit diagram of the Double-Tail Latch type Voltage SA. Double-Tail comparator uses first tail for input stage and second one is used for latching stage. It operate at lower supply voltages. Large W/L ratio makes it possible to sink large current at latching stage which is independent of common mode voltages at inputs and small size of M_1 offers lower supply voltages resulting lower offset.

Circuit Operation

Reset phase: For its operation, during the pre-charge (or reset) phase ($Clk=0V$), both PMOS transistor M_4 and M_5 are turned on and they charge Di nodes’ capacitance to VDD, which turn both NMOS transistor M_{16} and M_{17} of the inverter pair on and Di' nodes discharge to ground. Sequentially, PMOS transistor M_{10}, M_{11}, M_{14} and M_{15} are turned on and they make Out nodes and Sw nodes to be charged to VDD while both NMOS transistors M_{12} and M_{13} are being off.

Evaluation phase: During the evaluation (decision-making) phase ($Clk=VDD$), each Di node capacitance is discharged from VDD to ground in a different time rate proportionally to the magnitude of each input voltage. As a result, a n input dependent differential voltage is formed between $Di+$ and $Di-$ node. Once either $Di+$ or $Di-$ node voltage drops down below around $VDD−|Vtp|$, the additional inverter pairs M_{18}/ M_{16} and M_{19}/ M_{17} invert each Di node signal into the regenerated (amplified) Di' node signal. Then the regenerated and different phased Di' node voltages are amplified again and relayed to the output-latch stage by transistor M_{10}−M_{13}. As the regenerated
each Di’ node voltage is rising from 0V to V_{DD} with a different time interval, transistor M12 and M13 turn on one after another and the final amplification is made between SW nodes before the regeneration process. Once either of SW node voltages falls below around V_{DD}−V_{tn}, the output latch stage starts to regenerate the small voltage difference at Out nodes into a full-scale digital level: Out+ node will output logic high (V_{DD}) if the voltage difference at Di’ nodes ΔDi’(t) is negative (Di+(t) < Di−(t)) and Out+ will be low (0V) otherwise. Once either of Out node voltages drops below around V_{DD}−|V_{tp}|, this positive feedback becomes stronger because either PMOS transistor M8 or M9 will turn on.

Simulation Results and Discussion

Circuit Diagram:

Figure 5 shows the schematic diagram of the double tail dual rail comparator. This circuit also comprises of latch stage followed by buffer stage.

DC Characteristics:

Figure 6 shows the DC response of the circuit. Input voltage is taken as 1 V and swept from -1.8V to +1.8V. Reference Voltage is taken as 0.7V. From the graph we can conclude that the comparator is working fine.

Transient Analysis:

Figure 7 shows the transient analysis of the circuit. From this analysis we can say that the output of out+ node in latch stage is affected by noise and fluctuating with the clock transition as that was in the previous comparator. For the transient analysis we have taken pulse voltage source as input stage and a dc voltage source as reference node.
COMPARISON TABLE

<table>
<thead>
<tr>
<th>COMPARATOR</th>
<th>TRANSISTOR COUNT</th>
<th>OFFSET VOLTAGE (mV)</th>
<th>POWER DISSIPATION (µW)</th>
<th>DELAY (nS)</th>
<th>SPEED (GHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preamplifier based Comparator</td>
<td>22</td>
<td>72.8</td>
<td>75.49</td>
<td>2.745</td>
<td>0.364</td>
</tr>
<tr>
<td>Latch type voltage sense Amplifier</td>
<td>19</td>
<td>10</td>
<td>26.63</td>
<td>0.415</td>
<td>2.41</td>
</tr>
<tr>
<td>Double tail latch type Voltage sense amplifier</td>
<td>22</td>
<td>38</td>
<td>79.01</td>
<td>0.333</td>
<td>3.003</td>
</tr>
<tr>
<td>Double tail dual rail Dynamic latched comp (improved circuit)</td>
<td>27</td>
<td>78</td>
<td>102.3</td>
<td>0.293</td>
<td>3.41</td>
</tr>
</tbody>
</table>

CONCLUSION

A new dynamic comparator using positive feedback which shows better response, higher speed, lower power delay product than the conventional pre-amplifier based comparators has been targeted for ADC application. The results are simulated in Cadence® Virtuoso Analog Design Environment with GPDK 180nm technology. In the circuit design, two additional inverters are used in the latched stage. Output of the latch stage in the proposed design is not affected by noise. The transistor count in the proposed comparator is higher to an extent among all the comparators analyzed. After simulation the power dissipation of the comparator is increased by 29.4% and speed is increased by 13.5% as compared to the simulation results that was achieved for conventional double tail comparators.
References:

