
2019/EUSRM/8/2019/55222

 Engineering Universe for scientific Research and management
 ISSN (Online): 2319-3069 Vol. 11 - Issue VIII

August 2019

AN EMPIRICAL MODEL FOR WEB APPLICATIONS TO DETECT AND

PREVENT SQL INJECTION ATTACKS (SQLIA)

Arvind Kumar
1
, Prof. Ritesh Kumar Yadav

2
, Dr. Varsha Namdeo

3

1,2,3
 Department of CSE, RKDFIST, Bhopal, India

arvind86ojha@gmail.com

ABSTRACT:

The Web applications have developed into the most

significant communication manner among various

sorts of service suppliers and clients. It has evolved

from a static medium, with user interaction limited to

navigation among web application pages, to a highly

interactive dynamic medium performing concurrent

transactions and serving up personalized content.

Several recent works attempt to develop a general and

schematic methodology for automatically inferring the

specifications for internet applications that in turn

facilitates automatic and sound verification of

application logic. During this research work we

proposed “Improved Method to Detect and Prevent

SQL Injection Attacks (SQLIA) in Web Applications”.

Nevertheless the suggested system will be likewise

successful for both simple and complex data types.

The proposed method is an advanced tool to discover

and avoid attacks in web applications, this method is

trouble free to implement and deploy. Throughout this

scheme all the information validations rules are kept at

a protected location. These information validation

rules as well prepared into various XML format and

that why we referred them as XML validation rules. At

any time when server obtains any input from user, the

server could validate the entire script maintained by

the XML validation rules already stored inside the

server. We conclude by highlighting the robust

features of the efficient proposed method, which can

detect the error during the development statically and

can protect web applications from the future SQL

injection.

Key Words: SQL injection, XML, WWW, Web

Security, Web Application, Threats.

1. INTRODUCTION

The Web applications have developed into the most

significant communication manner among various

sorts of service suppliers and clients. It has evolved

from a static medium, with user interaction limited to

navigation among web application pages, to a highly

interactive dynamic medium performing concurrent

transactions and serving up personalized content. This

dynamic medium application offers a wide range of

services, such as on-line stores, e-commerce, social

network services, etc. As progressively services are

offered by the World Wide Web (WWW), attempts

from both academia and business are determined to

produce technologies and principles that convene the

complicated constraints of today’s venture Web

applications and clients.

1.1 WEB APPLICATION CONSTRUCTION

A web application could be described through the

number of layers that data will go by through on its

journey from the database layer (where it is saved in a

database server normally) to the presentation layer

(where it is exhibited to the user). All layers normally

execute on a dissimilar system or in a dissimilar

procedure space on the similar system [1].

A client-server model was sufficient when information

were mainly a text in the web applications. Inside the

client-server model, the client and server are splitted

by logics. This 2-layer client-server circumstances

efforts very well for a little business that only utilizes,

or requires, a single data source [2]. Nevertheless, the

objective of the majority companies is to rise, and this

wants extra logics to convene the business demands.

Regrettably, the 2-layer model does not balance very

well. If the business rules modify then the application

mailto:arvind86ojha@gmail.com

2019/EUSRM/8/2019/55222

requires be rebuilding and redeploying.

Because of the constraints of the 2-layer client-server

model, distributed applications are frequently splitted

into 3 or more layers [1]. Elements in every of these

execute a precise sort of processing. There is a client

Services (Presentation) layer, a Business Services

layer, and a Data Services layer in a layer application,

as shown in Figure 1.

Figure 1: Three-layer web applications construction

The layer construction, business logic, is splitted from

the client interface and the data source. Breaking up

applications into these divide layers or segments could

decrease the difficulty of the overall application, and

this result in applications that could gather the

growing requires of today's businesses.

2. WEB APPLICATIONS

The structure of the Web application is the integration

of a Hyper Text Markup Language (HTML), a Client

Script and a Server script that will be formatted and

distributed from web servers to client systems and

viewed through a web browser. Web applications are

placed in an appropriate place in the web server which

will receive document requests and data submission

from web browsers through the Hyper Text Transfer

Protocol (HTTP) top of the TCP/IP layer [3]. The

main function of the web server is to feed HTML files

to the web browsers. If the client requests an existing

static file, it will be retrieved from the server’s hard

disk and sent reverse to the web browser. The

communication among the web browser and the web

server is usually condition less. The intricacy of web

based applications has as well developed considerably

from information distribution to online operations,

enterprise wide planning, scheduling systems and Web

based joint work situations. Numerous characteristics

of quality web based applications such as simplicity of

navigation, accessibility, scalability, maintainability,

usability, compatibility, inter operability, safety and

consistency are not specified the deliberation they

deserve throughout development. Various web

applications also fail to address the intellectual,

solitude, ethical, and lawful features. In order to deal

with these major matters, all the web applications must

have web safety features.

2.1 Web Application Modules

A module is a summarized part of rules that executes a

definite function for a web application. This function

might be the processing of a business rule, or it might

be the recovery of some data from a database layer for

an application. Usually, client Interface modules are at

the presentation layer [4], business modules are at the

business layer and database related modules are at the

data access layer. The data centric module or the data

access layer is liable for integrating with the data

resources like Relational Database Management

System (RDBMS) tools, which the application

requires, to be capable to function. These data

resources might be the SQL Server or Oracle

databases, Exchange message stores, or UNIX legacy

applications. It gives steady data access to dissimilar

data sources, and creates the position of the data

2019/EUSRM/8/2019/55222

transparent. The business module or the business logic

layer is proposed to cover the complex interactions

that a set of business rules requires, in order to process

and guard the client interface designer from having to

recognize something about the underlying data. The

requirement to utilize the business module is to

summarize business rules within a module. The client

interface module or the presentation layer presents the

application content to the user which would be created

by the business logic. Hence, an abstraction in the

business logic module, data module and client

interface module can be offered in the web application

safety.

2.2 Web Functionality

Web applications employ numerous different

technologies to deliver their functionality. Reasonable

functional application may employ dozens of distinct

technologies within its server and client modules.

2.2.1 Server-Side Functionality

Whenever a user requests a resource, the server’s

response is created on the fly, and each user may

receive content that is uniquely customized for him.

When a user’s browser makes a request for a dynamic

resource, it does not normally ask for a copy of that

resource. In general, it will also submit various

parameters along with its request. These parameters

enable the server-side application to generate content

that is tailored to the individual user. There are three

main ways in which HTTP requests can be used to

send parameters to the application, namely, the URL

query string, HTTP cookies and the body of requests

using the GET / POST method. In addition to these

primary sources of input, the server-side application

may, in principle, use any part of the HTTP request as

an input to its processing. Web applications employ a

wide range of technologies on the server side to

deliver their functionality. Some of them are given

below

 Scripting languages, such as PHP, VBScript,

JavaScript and Perl.

 Web application platforms, such as ASP.NET

and Java.

 Web servers, such as Apache, Tomcat, IIS, and

Netscape Enterprise.

 Databases, such as MS-SQL, Oracle, and

MySQL.

 Other back-end modules, such as file systems,

SOAP-based web services, and directory

services.

All these technologies are to be properly integrated

and configured to provide secure service to the web

clients.

2.2.2 Client-side functionality

In order to make the server-side application receive

user input and actions, and present the results of these

back to the user, it needs to provide a client-side user

interface. Since all web applications are accessed via

the web browser, all these interfaces share a common

core of technologies. HTML forms are the usual

mechanism for allowing users to enter arbitrary input

via the browser. Hyperlinks and form elements can be

used to create a rich user interface capable of easily

gathering most kinds of input which web applications

require. However, most applications employ a more

distributed model, in which the client side is used not

simply to submit the user data and actions but also to

perform the actual processing of data.

A significant development in the use of JavaScript has

been the appearance of Asynchronous JavaScript and

XML (AJAX) techniques for creating a smoother user

experience, which is closer to that provided by the

traditional desktop applications [5]. AJAX involves

issuing dynamic HTTP requests from within the

HTML page, to exchange data with the server and

update the current web page accordingly, without

loading a new page altogether. These techniques can

provide very rich and satisfying user interfaces. The

integration of various complex technologies and an

inadequate design may introduce vulnerabilities,

which attract attackers to create threats in web

applications. Most of the vulnerabilities in web

applications are due to the poor development of web

applications that continue to expand a high probability

of low performance and/or failure.

3. LITERATURE REVIEW

A risk is any incident or occurrence with the possible

cause to damage to a web application throughout the

discovery, variation or ruin of data, or by the rejection

of serious services. Risks could vary from gaining

something of cost at no cost, to razing the important

data or reputation of furthers. To provide the necessary

security measures in web applications, security

solutions need to be implemented by conducting a

security risk assessment to identify the key issues and

vulnerabilities. Based on the assessment, a security

plan has to be developed that includes installing

hardware devices in conjunction with security

software to protect valuable assets in a web

environment. The standard elements of the plan for

perimeter security include firewalls, encrypting files

and messages, Intrusion Detection Systems (IDS),

Using digital signatures to protect transactions,

2019/EUSRM/8/2019/55222

Intrusion Prevention System, Protecting logs with

immutable files, Demilitarized Zone (DMZ), Adopting

advanced routing protocols and patch and vulnerability

management systems. Unfortunately, the installed

security elements do not provide the required solutions

for the application layer intrusions.

3.1 Vulnerability Analysis and Scanner

The application layer protocol vulnerabilities are the

access point for the intruders, and those intrusions are

very hard to defend. Several tools and techniques have

been developed to analyze the vulnerabilities in web-

based applications. Implementing a daily vulnerability

scan is one of the most effective ways in which a

website owner could ensure the overall health of his

website. It proactively identifies the vulnerabilities,

lets the owner remove the questionable code, and

helps to mitigate issues before cybercriminals exploit

them. Reactive measures include quick identification

of Zero-Day vulnerabilities [6], which affect a large

number of websites in a short span of time. There is no

patch available for this vulnerability. Even though a

Zero-Day intrusion may occur, it is possible to identify

where the compromised websites are extracting the

intrusion information from, or where the malicious

website visitors are being redirected to. Authors [7]

have designed and developed a tool called SecuBat

which is a vulnerability scanning tool, using black the

box test approach and it automatically analyzes web

applications in generic and specific manners to expose

the SQL insertion and XSS vulnerabilities. This tool

scans security flaws in web pages for exploitable

vulnerabilities, using multi-threaded crawling, and

intrusion and analysis components, equipped by a

graphical user interface. Though the tool SecuBat

emphasizes on creating various attacking vectors for

detecting XSS vulnerabilities, it does not pay enough

attention to detect SQL insertion vulnerabilities like

blind SQL insertion and irrational Queries.

Scanning tools are useful in identifying the

vulnerabilities in a web application. The vulnerability

scanners must be properly designed and evaluated, so

that these tools do not come up with false positives.

Authors [8] proposed a method to evaluate and

benchmark automatic web vulnerability scanners,

using software fault insertion techniques. The most

common types of software faults are inserted in the

web application code, which is then checked by the

scanners. The results are compared by analyzing the

coverage of vulnerability detection and false positives.

The author evaluated the leading three commercial

scanning tools, and the results show, that in general,

the coverage is low and the percentage of false

positives is very high. In addition, authors [9] have

conducted a case study with three different scanners

for detecting web application vulnerabilities, and

investigated the effectiveness of using the Application

Vulnerability Description Language (AVDL) to

describe the vulnerabilities and their contribution in

developing a unified data model used a technology

independent, rule-based solution for the vulnerability

analysis of web-based applications. But automatic web

vulnerability scanners are available, that could help to

locate the vulnerabilities, and are popular tools among

developers of web applications.

The purpose of the vulnerabilities scanning tool is to

stress the application from the intruder's point of view,

by issuing a large number of interactions within it.

Trusting the results of web vulnerability scanning

tools is of utmost importance. Without a clear idea of

the coverage and false positive rate of these tools, it is

difficult to judge the relevance of the results they

provide. Furthermore, it is difficult, if not impossible,

to compare the key figures of the merit of web

vulnerability scanners. Hence, web application

scanners are helpful to some extent to identify the

vulnerabilities in web applications.

3.2 SQL Injection

Command Execution is a common type of web

application threat in the World Wide Web. Dangerous

intrusions under command insertions are SQL

insertion, XPath insertion, Buffer Overflow, Light

weight Directory Access Protocol (LDAP) Insertion

and Format string intrusion. Statistically, the SQL

Injection (SQLI) vulnerability is a serious and

widespread security vulnerability of web applications.

In this literature review, a detailed study has been

conducted, to analyze the different kinds of SQL

injection detection and prevention strategies, proposed

by various authors. Many researchers and practitioners

are familiar with only a subset of the wide range of

techniques available to intruders who try to take

advantage of SQL injection vulnerabilities. As a

consequence, many of the solutions proposed, address

only limited issues related to SQL injection. To solve

this problem, [33] made an extensive review of the

different types of SQL injection intrusions, known to

date. For each type of intrusion, they provided

descriptions and examples of how intrusions, of that

type could be made. They also presented and analyzed

the existing detection and prevention techniques

against SQL injection intrusions. They discussed each

technique, and its strengths and weaknesses in

addressing the entire range of SQL injection

intrusions. The various strategies and mechanisms

2019/EUSRM/8/2019/55222

proposed by different authors to detect and prevent SQL injection intrusions are shown in Figure 2.

Figure 2: Prevention strategies of SQL injection intrusions

4. PROPOSED WORK

We select SQL injection in web applications for

several reasons. Building a web application is not so

typical these days. Mainly a user who has some

knowledge of programming may well create a web

application practically with any trouble. Nevertheless,

it is so simple to create web applications without any

protection vulnerabilities. In a survey of “Hewlett-

Packard (HP) in 2011 topmost cyber safety threats

report,” all the considered web applications have at

least one or more susceptibility. One of the main

causes is that a programmer doesn’t give adequate

awareness to the safety element because of alternate

causes such as lack of knowledge, deadline stress, and

resources restriction etc.

4.1 Proposed Solution

During this research work we proposed “Improved

Method to Detect and Prevent SQL Injection Attacks

(SQLIA) in Web Applications”. Nevertheless the

suggested system will be likewise successful for both

simple and complex data types. The proposed method

is an advanced tool to discover and avoid attacks in

web applications, this method is trouble free to

implement and deploy. Throughout this scheme all the

information validations rules are kept at a protected

location. These information validation rules as well

prepared into various XML format and that why we

referred them as XML validation rules. At any time

when server obtains any input from user, the server

could validate the entire script maintained by the XML

validation rules already stored inside the server.

Typical dissimilarity among proposed method and

other SQL injection attack detection and prevention

techniques is that our proposed method authenticates

the entire input wed application information

simultaneously in one execution. Furthermore the

XML validation rules are designed and saved on a

particular basis that builds the programmer task easier,

they have to do is just to judgment the authentication

task for validating any web application information.

Right now few validation functions are written for

some web applications. This validation information

could authenticate the input scripts maintained the

basis on which they designed within the XML

validation rules. For all application the input XML

validation scripts could have registered design for

various client appeals. XML validation rules are

designed on a particular base for all sorts of input

XML codes and therefore the input XML code must

do well the authentication process. This process could

mainly separate the information authentication of a

web application from the web application development

cycle. The programmer currently should not to

concern about the SQLIA and data legitimacy. The

authentication phases of data are sustained through a

separate cluster which might manage the XML

VALIDATION rules. This is frequently conjointly

valuable as a result of the traditional web programmers

are going to be entirely uninformed about the

protection rules of the web application.

The benefit of proposed technique is clarified as

follows:

2019/EUSRM/8/2019/55222

 No requirement to send many appeals to the

server, we could send all the web application

information inside one XML format file.

 Server side has validation rules to authenticate

each XML format file. The validation rules are

called data validation rules. These rules are

designed and saved at protected location in the

server.

 At any time a server obtains client’s appeal in

XML file format, it will parse the input XML

file and authenticate it beside the validation rule

designed in data validation rules. This will

create the data validation system standard and

there is no requirement to design code for data

validation for each and every web page. Only

we require to call the XML validation function.

Just like the SQL Injection, the XPath Injection attacks

arise when a web application utilizes client supplied

information to create an XPath query for XML data

file. By sending deliberately abnormal information

inside the web application, an attacker might discover

how the XML data file is designed, or obtain data that

he might not usually have access to. He might even be

capable to raise his rights on the web application if the

XML data file is being utilized for validation.

Querying in XML is complete with XPath, a sort of

easy expressive declaration that permits the XML

query to place a part of information. Like SQL, you

might give definite attributes to discover, and patterns

to compare. When utilizing XML for a web

application it is ordinary to recognize several form of

input on the query string to recognize the content to

place and exhibit on the page. This input must be clean

to authenticate that it doesn’t mess up the XPath query

and return the incorrect data. Our proposed method

will be hold such kind of matters strongly and verifies

that such attacks could not modify the XML

VALIDATION rules designed in the server.

Technical Details of XML VALIDATION SQL

This section contains discussion about the significant

components of XML VALIDATION SQL. The

understanding of the practical information of XML

VALIDATION SQL lies on the understanding of such

components. Here we clarify them briefly.

 Working of Method: As clarified previously, in

XML VALIDATION SQL data authentication

occurs within the database server. In database,

we have designed a stored procedure which

recognizes every input data mutually as a XML

file format and authenticate them against the

validation rules stored surrounded by the

database. Therefore onward, we would identify

this stored procedure as VALI-SP. At any time

application server requires to authenticate any

data, it would create an XML file format for

every such data and give it to the stored

procedure VALI-SP. The VALI-SP in database

would authenticate all data values against the

equivalent validation rules.

 XML file format: we utilize two XML file

formats: first is utilized for client data input into

the VALI-SP, another is utilized by VALI-SP to

give error note to the application server.

In this XML file format, for each input data there are

two elements:

 <data-value>

 <data-type>

The <data-value> includes the value of data entered

through the client whereas <data-type> includes the

name of data validation rule which must equivalent the

value of data in the authentication procedure. The

<data-type> includes just the name of the data

validation rules, the real validation rule is designed via

regular language and saved within the database.

Type of Data: type of Data doesn’t signify the

common types of data of programming languages.

Here types of data denote some pre described

validation rules based on which client data should be

authenticate. The types of data are saved in database.

The table name given to these types of data is

“certificate”, in database which holds every the data

types. The description of the table is as follow:

 Name: it is an exclusive name the type of

data.

 Rule: designed in regular expression for the

type of data.

 Error message: it is the message that will

launch to application server if the validation

rules fails.

The types of data which are by default obtainable in

database server (table “certificate”) are described

below:

 INT: any Integer digit.

 NUM: Any digit with decimal point.

 STRING: Any string includes alphabet of

English language, spaces and number.

 PINCODE: Postal pin code format.

 ALPHA: A solitary English alphabet word.

If we wish to add some fresh type of data than it might

be inserted into the database but the validation rules

2019/EUSRM/8/2019/55222

must have to design appropriately. To insert a fresh

type of data the programmer must know the basic

perceptive of the MySQL syntax based on regular

expressions.

XML creator: This element obtains all input

information and data type id’s as input and creates an

XML from above inputs. The organization of the XML

format is clarified in previous Para. After creating the

XML, it executes the stored procedure (VALI-SP) via

passing the created XML as a constraint. The complete

element is designed in the form of function.

The stored procedure (VALI-SP) gives three

constraints:

 Result: that provide info about the complete

data authentication succeeded or not.

 UID: If the authentication succeeded then it

would also create one unique id (UID) which

might be utilized for more protected

communication with the database server. The

idea of UID will be conferred in afterwards.

 Error Message: If the data authentication be

unsuccessful for several data, then the error

messages of every such type of data would be

generated jointly as an XML file. The

particulars would be clarified afterwards.

Stored Procedure (VALI-SP): this procedure is

designed for MySQL (expendable for other databases

according to need). It receives an XML file formatted

input from the client and executes data authentication

for the data includes in the XML. The entire

organization of the XML file is previously clarified.

The job of VALI-SP is described step-by-step below:

 First Parse the XML file.

 Authenticate all data into the XML: As we

described previously, all data in the input

XML file has two components: <data-value>

and <data-type>. <data-type> is utilized to

obtain the validation rules designed for the

database server for that particular data type.

 In authentication, if any data be unsuccessful

to assure the equivalent validation rules then

the resultant error message for that validation

rule would be adjoined to the error message.

The error message is as well designed in

XML format and would be conversed

afterwards.

 If authentication succeeded then a 38 bit

unique id (UID) would produced and stored

into the database server. The function of this

UID is described afterwards.

 The stored procedure doesn’t give any output,

in fact it executes a choose query

immediately before terminating. This choose

query produces an outcome set for ’result

xml’, ’result’ and ’unique id’. Here ’result’

gives either 0 or 1 depending on wither the

data authentication processes be successful

entirely or not. ’result xml’ is the error memo

and would be blank if ’result’ encloses 1.

’unique id’ includes the created unique id and

would be blank if ’result’ encloses 0.

Principle of UID: The VALI-SP produces a UID if the

data authentication procedure succeeded. This UID is

saved in the database server and also give back to the

application server. The principle of UID is simply to

compose the additional protected database server

communication. It might be probable that an attacker

can crack the security protocol of the application

server. In that case they have to eliminate the XML

VALIDATION SQL based authentication from the

designed application code. If they try to crack security

then the data authentication based on XML

VALIDATION SQL would be avoided and the SQL

injection would be penetrated into the database server.

To avoid these types of detour, UID might be utilized.

Throughout the database server function the UID must

require to pass to the database server. In database

server the UID passed by the client would be

evaluated with the UID collected within the database

server and only agree to to progress the operation if

both equivalents. in its place of executing SQL

statements straight from application server it is

suitable to employ them stored procedure for

operations of database. In this manner the UID

examination will be easier for the database server.

Error Message format:

The layout of the XML created by VALI-SP for error

messages is described below:

<result>

<error_message>

<data_id>1</data_id>

<message>Only integer digit recognized.</message>

</error_message>

<error_message>

<data_id>2</data_id>

<message>Only integer digit recognized.</message>

</error_message>

</result>

It is depends on the application programmer that how

to parse and employ these kind of error messages.

2019/EUSRM/8/2019/55222

Installation of XML VALIDATION SQL:

Previously we discussed about XML VALIDATION

SQL, it composes the web application programmer

work easier. Programmers not require being anxious

about the defense rules since the rules would be design

by XML VALIDATION SQL. They simply require to

utilizing those rules by using the id of the equivalent

rule. Also programmer might not observe the rules

design in the database server. In this manner the

application would be more protected since even

programmer won’t have comprehensible awareness

about the authentication rules.

For installing XML VALIDATION SQL into your

system, just follow these simple steps:

 Authentication Database: If your web

application has a predefine database then

immediately execute the “verify.sql” into that

database. After executing the SQL script it

would produce two charts (certificate chart

and key checker chart) and one stored

procedure (VALI-SP) in that database. And if

you don’t contain any database previously

then build one database initially and then

execute the verify.sql script on it.

 Verify.web: Store this web file someplace in

your application system so that you could

access it on requirement. This file includes a

function validate with XML which efforts as

XML creator as clarified in previous section.

Also you require modifying the 4 invariables

designed at the top of the file based on

MySQL database.

That’s it, now your web application is wholly prepared

to utilize XML VALIDATION SQL.

Manual of XML VALIDATION SQL:

When installation is completed and you want to utilize

XML VALIDATION SQL in your web application. Do

these simple steps:

 Obtain all the client inputs (either by POST

or GET method). In PHP, we usually do it

similar to $data1=$_POST [’data-field1’];

this element is universal and have to perform

it to get back the client input.

 After getting all the information, authenticate

the suitable data type (name of the data type)

for all data. If at present accessible data types

are not accurately fitting on constraints then

communicate with management to generate

fresh data types in XML VALIDATION SQL

database server.

 Now call the verify function Where typei is

the type of data name of the ith data and

data1 is the genuine content of i
th

 data.

 As clarified previously, the function would

return the outcome as “ERROR” or

“VERIFIED”. Also the function stored two

values into session: error_message and uid.

5. RESULT ANALYSIS

We developed a TESTBED, which is coded in

JAVASCRIPT and able to run SQL queries of web

Applications. To create Client server environment in

PHP web application we employed XAMPP 5.6.23

version. XAMPP 5.6.23 is open source cross

platform for web server solution stack package,

consisting mostly of the Apache HTTP Server, My

SQL database server with interpreter for codes

programmed in the PHP and Perl. For the result

analysis of proposed technique we developed a

TESTBED, which is programmed in JAVA language

and capable to execute SQL queries of any web based

Applications. To generate Client Server background in

web based application which are developed in PHP,

we utilized XAMPP 5.6.23 version for this purpose.

XAMPP 5.6.23 is a tool, which is open source

platform for web server explanation stack package,

having mostly of the HTTP Apache Server, database

like My SQL and analysts for scripts coded in

the Perl and PHP programming languages.

Table 1: Explanations of Web Application used for

experiment

Web

Application

Name

Description of web Application

Management

Information

System

A web based application for

members of staff in organization

is coded in PHP

Digital Library
A online library computerization

based application coded in PHP

Project

manager

A academic web application for

supervision of project written in

PHP

Shop_ Online
A web application written in PHP

for shopping online

Net medicine
An Web application for online

medical shop written in PHP

To estimate the efficiency of proposed method the

TESTBED is utilized. The developed TESTBED has

been utilized for evaluating a variety of PHP web

applications given in table 1. It inspected so many test

cases on an open source web based applications. It

2019/EUSRM/8/2019/55222

includes two kinds of test cases: the XML laws from

which SQL queries gain validation and another is to

return error note via the server. Table 6.1 reviews the

various Web applications which are developed in PHP.

The Proposed Tool experimented on some PHP based

web applications (descript in table 1) and results

demonstrates that proposed Tool efficiently identified

and stops vulnerabilities. Table 2 illustrates these

susceptible web applications. The first column

explains the Web applications name, the second

column explains total number of input for every web

application, third column explains total malevolent

inputs, fourth column signifies total assaults identified

and the fifth column explains the recognition rate.

Table 2: Results analysis of proposed method on

TESTBED

Application
Total

inputs

Total

Malevolent

inputs

Total

Assaults

identified

Rate

of

recog

nition

Management

Information

System

200 75 75 100%

Digital

Library
250 92 91 98.9%

Project

manager
300 157 157 100%

Shop_

Online
220 87 87 100%

Net

medicine
225 87 87 100%

6. CONCLUSION

In this work, we have converse about the concept of

SQL injection which has become a common problem

of all the web-based applications. We have

summarized a variety of techniques existing to

protected data from SQL injections, which can modify

the program behavior permitting the attacker to

retrieve and modify the database information. In this

research work we present a method called “Improved

Method to Detect and Prevent SQL Injection Attacks

(SQLIA) in Web Applications” which can detect the

vulnerability spots in the source code. Also, it provides

the developer with an additional option of checking

the syntax. Detection is done by validating the SQL

queries using general validation procedure based on

XML rules and the nature of the injection type. Any

possibility of vulnerability or violation of the analyzed

nature is reported as a warning message or error

message to the developer.

The warning message or error message includes the

injection type description and the line number of

vulnerable spot in the source code. The concepts

explained in this work assist the Developer to modify

the SQL statements and make the code attack free. We

conclude by highlighting the robust features of the

efficient proposed method, which can detect the error

during the development statically and can protect web

applications from the future SQL injection.

We believe that the ideas presented in this research

work can be further extended to include new injection

types. This work also paves way for the development

of vulnerability detection services, which can be used

by developers to detect vulnerability spots in the

source code. We feel the area of SQL injection

vulnerabilities is wide open for research and we

conclude by suggesting that this step to verify the code

against SQL injection vulnerabilities can be added in

the checklist for performance review in the static code

analysis of the source code of data driven applications.

REFERENCES

[1] Noack, J., Mehmaneche, H., Mehmaneche, H.,

and Zendler, A. “Architectural Patterns for Web

Applications”, In Proceedings of the 18th

IASTED International Conference on Applied

Informatics, Innsbruck, Austria, ACTA Press,

2000

[2] Lieven Desmet, Bart Jacobs, Frank Piessens and

Wouter Joosen “A Generic Architecture for Web

Applications to Support Threat Analysis of

Infrastructural Components”, Communications

and Multimedia Security, IFIP- The International

Federation for Information Processing, Springer,

Vol.175, pp.125-130, 2005.

[3] Andrews, J. “Understanding TCP Reset Attacks”,

KernelTrap, KernelTrap.org, Florida, USA, 2006.

[4] Kadri, Reda, Chouki Tibermacine, and Vincent Le

Gloahec. "Building the presentation-tier of rich

web applications with hierarchical components."

InWeb Information Systems Engineering–WISE

2007, pp. 123-134. Springer Berlin Heidelberg,

2007.

[5] Zepeda, J.S. and Chapa, S.V. “From Desktop

Applications Towards AJAX Web Applications”,

4th International conference on Electrical and

Electronics Engineering, IEEE, pp.193-196, 2007

[6] Inghama, K.L., Somayajib, A., Burgea, J., and

Forresta S. “Learning DFA representations of

HTTP for protecting web applications”,Computer

Networks, Elsevier, Vol.51, No.5, pp. 1239-1255,

2007

2019/EUSRM/8/2019/55222

[7] Kals, S., Kirda, E., Kruegel, C., and Jovanovic, N.

“SecuBat: A Web Vulnerability Scanner”, 15th

International Conference on World Wide Web

ACM, Edinburgh, Scotland, pp.247-256, 2006.

[8] Fonseca, J., Vieira, M. and Madeira, H. “Testing

and comparing web vulnerability scanning tools

for SQL injection and XSS attacks”, 13th IEEE

Pacific Rim International Symposium on

Dependable Computing Conference, Melbourne,

Victoria, Australia, pp.365-372, 2007.

[9] Pushpraj Tanwar,

Ajay Somkuwar, Hard

component detection of transient noise and its

removal using empirical mode decomposition and

wavelet-based predictive filter, IET Signal

Processing, 12(7), 2018, pp. 907-916.

[10] Sandeep Rajurker, Anurag Jain, Management

Information Systems Over Social Network

Analysis: Towards Web Personalization,

EUSRM, 9(3), 2017.

[11] Le, H.T. and Loh, P.K.K. “Evaluating AVDL

Descriptions for Web Application Vulnerability

Analysis”, in IEEE International Conference on

Intelligence and Security Informatics, Taipei,

Taiwan, pp.279-281,2008.

[12] Halfond, W.G, Viegas, J. and Orso, A. “A

classification of SQLinjection attacks and

countermeasures”, In Proceedings of the

international symposium on secure software

engineering, 2006

https://digital-library.theiet.org/search;jsessionid=581t4fgdr0md5.x-iet-live-01?value1=&option1=all&value2=Pushpraj+Tanwar&option2=author
https://digital-library.theiet.org/search;jsessionid=581t4fgdr0md5.x-iet-live-01?value1=&option1=all&value2=Ajay+Somkuwar&option2=author

