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Abstract 

This paper derives the mathematical model of electrocardiogram 

(ECG) signal and describes the features extraction algorithm for 

ECG signal using Huang Hilbert Transform and Wavelet 

Transform. The mathematical model of ECG signal is generated 

using the Fourier series method considering it as a periodic 

signal. ECG signal for an individual human being is different due 

to unique heart structure. The purpose of feature extraction of 

ECG signal would allow successful abnormality detection and 

efficient prognosis due to heart disorder. Some major important 

features will be extracted from ECG signals such as amplitude, 

duration, pre-gradient, post-gradient and so on. Therefore, we 

need a strong mathematical model to extract such useful 

parameter. Here an adaptive mathematical analysis model is 

Hilbert-Huang transform (HHT). This new approach, the Hilbert-

Huang transform, is implemented to analyze the non-linear and 

non-stationary data.  It is unique and different from the existing 

methods of data analysis and does not require an a priori 

functional basis. The features of the ECG signal have also been 

performed by Wavelet transform. The effectiveness of the 

proposed scheme is verified through the simulation for the 

generated ECG signal. 
 

 Keywords— ECG; Fourier series; wavelet Transform; HHTs; 

EMD; HAS; IMF. 

1. Introduction 

Heart structure is a unique system used to generate an 

ECG signal independently via heart contraction. The needs 

of technology and computerized analysis usage has 

exhorted researchers, professionals, engineers and other 

expert people combining their efforts together in 

implementing quality diagnosis tools. The term quality has 

been interpreted as easier and faster analysis, lack 

maintenance, high efficient as well as low in the cost. To 

analyze ECG signals focusing on real peaks recognition 

since it provides valuable information to doctors regarding 

heart diagnosis [1]. With the help of ECG, the electrical  

 

 

activity within the heart can be easily detected from the 

outside of the body. When the ECG is abnormal it is called 

Arrhythmia. The patterns of the waveform change due to 

abnormalities of the heart [2]. Most of the clinically useful 

information in the ECG is found in the intervals and 

amplitudes defined by its features (characteristic wave 

peaks and time durations). The development of accurate 

and quick methods for automatic ECG feature extraction is 

of major importance, especially for the analysis of long 

recordings (Holters and ambulatory systems). In fact, beat 

detection is necessary to determine the heart rate, and 

several related arrhythmias such as Tachycardia, 

Bradycardia and Heart Rate Variation; it is also necessary 

for further processing of  

the signal in order to detect abnormal beats [3]. Producing 

algorithms for the automatic extraction of the ECG 

features  

is complicated due to the time-varying nature of the signal 

resulting of variable physiological conditions and the 

presence of noise.  

In recent years, the wavelet transform emerged in 

the field of image/signal processing as an alternative to the 

well-known Fourier Transform (FT) and its related 

transforms, namely, the Discrete Cosine Transform (DCT) 

and the Discrete Sine Transform (DST). In the Fourier 

theory, a signal (an image is considered as a finite 2-D 

signal) is expressed as a sum, theoretically infinite, of 

sines and cosines, making the FT suitable for infinite and 

periodic signal analysis. For several years, the FT 

dominated the field of signal processing, however, if it 

succeeded well in providing the frequency information 

contained in the analyzed signal; it failed to give any 

information about the occurrence time. This shortcoming, 

but not the only one, motivated the scientists to scrutinize 

the transform horizon for a “messiah” transform. The first 

step in this long research journey was to cut the signal of 

interest in several parts and then to analyze each part 

separately. The idea at a first glance seemed to be very 

promising since it allowed the extraction of time 

information and the localization of different frequency 

components. This approach is known as the Short-Time 

Fourier Transform (STFT). The fundamental question, 

which arises here, is how to cut the signal? The best 
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solution to this dilemma was of course to find a fully 

scalable modulated window in which no signal cutting is 

needed anymore. This goal was achieved successfully by 

the  

use of the wavelet transform. 

However a new approach, the Hilbert-Huang 

transform, is also developed to analyze the non-linear and 

non-stationary data.  It is unique and different from the 

existing methods of data analysis and does not require an a 

priori functional basis. By using HHT method, things will 

be much simpler, time-savings as well as reducing the 

needs of human efforts as machine has been trained to 

perform the desired     workload. 

Because of the distinct characteristics of HHT, it 

has attracted considerable research interest in exploring its 

potential as a frequency identification tool. A 

straightforward method could be that, after application of 

HHT to a signal, comparisons are made between Fourier 

spectra of the obtained IMFs and that of the original signal 

to find out the relationships between IMFs and vibration 

modes. Then by computing the amplitude weighted 

average frequencies based on the Hilbert spectra, modal 

frequencies can be identified. Besides, Yang et al.  

proposed a method in which, before they are analyzed by 

HHT, the signals are processed by some pre-selected band 

pass filters, the thresholds of which are determined by 

referring to the Fourier spectra of the signals. 

This paper describes the features extraction 

algorithm for electrocardiogram (ECG) signal using 

wavelet transform as well as HHT. The purpose of feature 

extraction of ECG signal would allow successful 

abnormality detection and efficient prognosis due to heart 

disorder. Therefore, we need a strong mathematic model to 

extract such useful parameter.  

This paper is organized as follows: Section II 

deals with mathematical modeling of ECG signal using 

Fourier series method. Section III describes the efficacy of 

wavelet transform as a feature extraction tool. Hilbert 

Huang Transform algorithm is explained in section IV. 

Effectiveness of the HHT algorithm and wavelet transform 

to extract features of ECG signal is illustrated in section V. 

Section VI concludes the paper. 

 

2. Mathematical Modeling of ECG Signal 

A typical scalar electrocardiographic lead is shown in Fig. 

1, where the significant features of the waveform are the P, 

Q, R, S, and T waves, the duration of each wave, and 

certain time intervals such as the P-R, S-T, and Q-T 

intervals. 

 

 
Fig 1. Typical ECG signal 

 

Any periodic functions which satisfy dirichlet’s condition 

can be expressed as a series of scaled magnitudes of sin 

and cos terms of  frequencies which occur as a multiple of 

fundamental frequency. 
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ECG signal is periodic with fundamental frequency 

determined by the heart beat. It also satisfies the dirichlet’s 

conditions: 

 Single valued and finite in the given interval 

 Absolutely integrable 

 Finite number of maxima and minima between 

finite intervals 

 It has finite number of discontinuities 

 

Hence Fourier series can be used for representing ECG 

signal.If we observe figure1, we may notice that a single 

period of a ECG signal is a mixture of triangular and 

sinusoidal wave forms. Each significant feature of ECG 

signal can be represented by shifted and scaled versions 

one of these waveforms as shown below.  

 QRS, Q and S portions of ECG signal can be 

represented by triangular waveforms 
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 P, T and U portions can be represented by 

triangular waveforms 

Once we generate each of these portions, they can be 

added finally to get the ECG signal. 

 

Generation periodic QRS portion of ECG signal 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 2. Generation of QRS waveform 

 

 

 

 

From equation (1), we have 

 

 

 

f(x) a                   0 x /

     a                    / x 0

bax l b
l

bax l b
l

   

    
 

 

0

1
( )

   / (2 b)

T

a f x dx
l

a b



 


 

 2 2

2
( )cos( )

2   (1 cos( / ))

n

T

n xa f x dx
ll

ab n b
n








 


 

 

2
( )sin( ) 0     ( )n

T

n xb f x dx EvenFunction
ll

   

0

1

( ) cos( )
2 n

n

a n xf x a
l






   
 

  

 

 

Generation of periodic p-wave portion of ECG signal 

 

 
 

Fig 3. Generation of p-wave 
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3. Wavelet Transform 

A Wave is an oscillating function of time or space, 

Wavelets are localized waves and they have their energy 

concentrated in time or space. The Transform of a signal is 

another form of representing the signal. It does not change 

the information content present in the signal. The Wavelet 

Transform provides a time- frequency representation of the 

signal and is well suited to the analysis of non-stationary 

signals [9] such as ECG. A Wavelet Transformation uses 

multi resolution technique by which different frequencies 

are analyzed with different resolutions. A Wavelet 
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Transform, at high frequencies, gives good time resolution 

and poor frequency resolution, while at low frequencies 

the Wavelet Transform gives good frequency resolution 

and poor time resolutions.  

 Wavelet transform [3] offers effective time-frequency 

representation of signals. All basis functions are formed by 

shifting and scaling of "mother" wavelet function 

 2( )t L R  : 

   ntt m

m

nm  


22 2
, 

   
Znm ,

     
Signal  2( )f t L R  can be then represented as 

   , ,m n m n

m n

f t d t     

where ,m nd  are spectral wavelet coefficients 

   , ,,m n m nd f t t     

For discrete signals  2( )f k L Z  hold similar results 

and corresponding transform is called Discrete Wavelet 

Transform (DWT). All the wavelet functions used in the 

transform are derived from the mother wavelet through 

wavelet translation (n) and scaling (m). The translation 

parameter n refers to the location of the wavelet function 

as it is shifted through the signal and the scale parameter m 

corresponds to frequency information. Large scales (low 

frequencies) dilate the signal and provide detailed 

information hidden in the signal, while small scales (high 

frequencies) compress the signal and provide global 

information about the signal. The wavelet transform 

merely performs the convolution operation of the signal 

and the basis function. 

4. Hilbert- HUANG TRANSFORM 

To analyze the data which is nonlinear and non-stationary, 

various attempts such as Spectrograms, Wavelet analysis, 

and the neural network etc have been made, but the  

Hilbert- Huang  Transform approach is unique and 

different from the existing methods. The fundamental parts 

of the HHT are the Empirical Mode 

Decomposition (EMD) and Hilbert spectral analysis 

method. By EMD method, any complicated problem 

related to engineering, biomedical, financial and 

geophysical data can be resolve due to an adaptive time-

frequency analysis. In this process data set can be 

decomposed into a finite and often small number of 

components, which is a collection of intrinsic mode 

functions (IMF). The Hilbert spectral analysis (HSA) 

provides a method for examining the IMF's instantaneous 

frequency data as functions of time that give sharp 

identifications of embedded structures[5]. 

Empirical Mode Decomposition (EMD) Algorithm 

The EMD method is well suited for analyzing time-

series data representing non stationary and nonlinear 

processes. This method could decompose any time-varying 

data into a finite set of functions called “intrinsic mode 

functions” (IMFs)[6]. An IMF can have variable amplitude 

and frequency along the time axis. The procedure of 

extracting an IMF is called sifting. An IMF is a function 

that satisfies the following requirements: 

 

1.  In the whole data set, the number of extrema and              

the number of zero-crossings must either be equal                

or differ at most by one. 

 

2. At any point, the mean value of the envelope by the 

local maxima and the envelope defined by the 

local minima is zero. 

The sifting process is as follows: 

 

(1) Identify the extrema (both maxima and minima) of 

data      

     ( )x t

 
 

(2) Generate the upper and lower envelopes ( )h t  and ( )l t

,      respectively, by connecting the maxima and minima       

points separately with cubic spline interpolation; 

(3) Determine the local mean 1

( ) ( )
( )

2

h t l t
m t

 
  
 

; 

(4) IMF should have zero local mean, subtract out 1m  

from 

      ( )x t , 

     1( ) ( ) ( )h t x t m t         

(5) Test whether 1( )h t  is an IMF or not; 

      2 1 2( ) ( ) ( )h t h t m t                   

 (6)  Repeat steps 1 to 5 and end up with an IMF 1( )h t . 

   

Once the first IMF is derived, define 

1 1( ) ( )C t h t , this is the finest temporal scale in the time-

series data, i.e., the shortest period component of the data 

x(t). To find all the IMFs, generate the residue 1( )r t  of the 

data by subtracting out 1( )C t from the data as 

    1 1( ) ( ) ( )r t x t C t          

The residue now contains information about the 

components for longer period; it is treated as the new data 

and is resifted to find additional components. The sifting 

http://en.wikipedia.org/wiki/Hilbert_spectral_analysis
http://en.wikipedia.org/wiki/Instantaneous_frequency
http://en.wikipedia.org/wiki/Instantaneous_frequency
http://en.wikipedia.org/wiki/Instantaneous_frequency
http://en.wikipedia.org/wiki/Maxima_and_minima
http://en.wikipedia.org/wiki/Maxima_and_minima
http://en.wikipedia.org/wiki/Maxima_and_minima
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process will be continued until it meets a stopping criterion 

yielding the subsequent IMFs as well as residues and the 

result is 

1 2 2

2 3 3
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r t C t r t

r t C t r t

r t C t r t

 

 

 

     

where ( )nr t  becomes a constant, a monotonic function, or 

a function with only maxima and one minima from which 

no more IMF can be derived. Two different criteria have 

been used: The first one was used in Huang et al. This 

stoppage criterion is determined by using a Cauchy type of 

convergence test. Specifically, the test requires the 

normalized squared difference between two successive 

sifting operations defined as 

2
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to be small. If this squared difference 
kSD  is smaller than 

a predetermined value, the sifting process will be stopped. 

Second criterion based on the agreement of the number of 

zero-crossings and extrema. Specifically, a S-number is 

pre-selected. The sifting process will stop only after S 

consecutive times, when the numbers of zero-crossings 

and extrema stay the same and are equal or differ at most 

by one. At the end of the decomposition the signal x(t) is 

represented as 

1

( ) ( ) ( )
n

i n

i

x t C t r t


                 

where n  is the number of IMFs and ( )nr t is the final 

residue. 

Once the signal is decomposed to a series of IMFs and a 

residue, HSA is applied to each IMF. In fact, for any of the 

IMFs ( )iC t , the corresponding ˆ ( )iC t is computed by 

Hilbert transform. An analytic signal ( )iZ t  is then formed, 

the magnitude of which is the instantaneous magnitude 

( )iA t , and the derivative of the phase angle of which, 

( )i t , is the instantaneous frequency ( )i t . Note that to 

avoid meaningless negative frequencies, the phase angle 

( )i t  must be unwrapped before the derivative is taken. 

Procedures of HSA are shown below: 
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where the subscript 1,2, , .i n   

Upon finishing EMD and HSA, and by dropping the 

residue 

( )nr t , the original signal ( )x t can now be expressed as 

                  n 
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i i
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By comparing with the Fourier series representation 

 ( ) ( )exp ( )i i

i

x t C t j t




      

where ( )iC t  and ( )i t  are time-independent constants 

for a given ( )x t , it is clear that HHT is characterized by 

expressing a given signal by the sum of a finite number of 

adaptive base functions. 

5. Simulation Results 

The ECG signal is simulated and used as a data or test 

signal. Two types of ECG signals (normal and abnormal) 

have been simulated and analyzed by wavelet transform as 

well as by HHT by extracting their features. Haar wavelet 

is used as a basis function to identify the frequency 

components of the simulated ECG signals as shown in 

figures 2 and 10. HHT has also been implemented for the 

features extraction of the normal and abnormal ECG using 

empirical mode decomposition. The IMF’s generated after 

every iteration are shown in figures 3-8 for normal ECG 

and in figures 11-17 for abnormal ECG. All the generated 

IMF’s are represented along with their frequency 

spectrum. We get signal with lower frequency content 

after successive stages of sifting of the signal which have 

high-frequency content. 
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Fig 4. ECG signal of a normal patient 

 

 

 
Fig 5. Wavelet transform of ECG Signal 

 

 
Fig 6. First IMF and its spectrum 

 
Fig 7. Second IMF and its spectrum 

 

 

 
Fig 8. Third IMF and its spectrum 

 

 
 

Fig 9. Fourth IMF and its spectrum 

 

 

 
Fig 10. Fifth IMF and its spectrum 
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Fig 11. Last monotone IMF and its spectrum 

 
 

 
Fig 12. ECG Signal of abnormal Patient suffering from 

Cornary Ischemia or Hypokalamia 

 
Fig 13. Wavelet Transform of abnormal ECG signal 

 
Fig 14. First IMF and its spectrum 

 

 
Fig 15. Second IMF and its spectrum 

 
Fig 16. Third IMF and its spectrum 
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Fig 17. Fourth IMF and its spectrum 

 
Fig 18. Fifth IMF and its spectrum 

 
Fig 19. Sixth IMF and its spectrum 

 
Fig 20. Last monotone IMF and its spectrum 

 

 
 

Fig 21. ECG Signal of abnormal Patient suffering 

Hypercalcemia or Hyperkalamia 
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Fig 22. Wavelet Transform of abnormal ECG signal 
 

 

 
Fig 23.  First IMF and its spectrum 

 

 
Fig 24. Second IMF and its spectrum 

 

 
Fig 25. Third IMF and its spectrum 

 

 

 
Fig 26. Fourth IMF and its spectrum 
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Fig 27. Fifth IMF and its spectrum 

 

 

 
Fig 28. Last monotone IMF and its spectrum 

6. Conclusions 

Huang Hilbert Transform and wavelet transform 

have been implemented in this work to extract the features 

of ECG signal (normal and abnormal). The HHT algorithm 

is the best suited algorithm for extracting features of any 

signal. The lower frequency content of any signal is 

generated using HHT algorithm which is useful to analyze 

any nonlinear signal. When down sampling of a nonlinear 

signal is required then this HHT algorithm is useful. Non-

uniform sampling techniques may be useful here, although 

they appear to require more complex up-sampling 

procedures to restore their original sampling rates than do 

uniformly sampled signals. Wavelet transform is requiring 

a fixed basis function for the analysis and found to be 

complex from the point of view of implementation. 

Simulation results are reflecting the efficiency of the HHT 

and wavelet transform technique in features extraction of 

ECG signal. 
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